DOI: 10.29327/2620317.8.2-8

EMISSÃO E COMPARAÇÃO DO CARBONO NAS RESIDÊNCIAS BRASILEIRAS COM ÊNFASE À ENERGIA SOLAR

Alvaro Rocha Barreto Viana

Granduando em Energias Renováveis Instituição de formação: UEMA E-mail: alvarorb0523@gmail.com

L-mail. arvarorboozo@gmail.com

Flávia Melyssa da Silva Rabelo

Engenheira Ambiental - CEUMA Mestranda em Meio Ambiente - CEUMA Graduanda em Energias Renováveis - UEMA

Instituição de formação: UEMA E-mail: flavia014@outlook.com

John Victor Bastos Pereira

Formação técnica IFMA Graduando em Eng elétrica Graduando em Energias Renováveis Instituição de formação: UEMA

E-mail: victorjohn.engenheiro@gmail.com

Renan Lucas Furtado Carvalho

Graduando em Energias Renováveis Instituição de formação: UEMA E-mail: renanlucas2109@gmail.com

Andrea Araujo do Carmo

Professora Associada I da Universidade Estadual do Maranhão Vice coordenadora do Mestrado Profissional Profágua UEMA Superitendente de gestão ambiental da UEMA

E-mail: andreaaraujo@professor.uema.br

RESUMO

Este trabalho analisa a emissão de Carbono associada ao consumo elétrico residencial no Brasil, com foco nas projeções futuras da matriz energética e seus impactos por classe socioeconômica. Utilizando cenários do Plano Nacional de Energia 2050, a pesquisa considera dados de emissão por fonte energética e perfis de consumo da população, demonstrando que a adoção de fontes renováveis, especialmente a energia solar, reduz significativamente a emissão de CO₂. Os resultados apontam que, sem a expansão de usinas movidas a combustíveis fósseis, a pegada de Carbono das residências poderá cair de 165 kg CO₂eq/ano em 2015 para até 52 kg CO₂eq/ano em 2050. Observou-se relação direta entre renda e emissões: residências de maior poder aquisitivo tendem a emitir mais Carbono. A geração distribuída, principalmente via painéis solares fotovoltaicos, surge como solução promissora para mitigar emissões, promovendo justiça energética e sustentabilidade. O estudo contribui

para o planejamento energético e formulação de políticas públicas voltadas à descarbonização do setor residencial.

Palavras-chave: Emissão de Carbono, Consumo Elétrico, Energia Solar, Matriz Energética, Residências Brasileiras

1 INTRODUÇÃO

O consumo energético residencial no Brasil representa parcela significativa das emissões de gases de efeito estufa, especialmente o CO₂, como apontam estudos de Soriani *et al.* (2020) e Lucena *et al.* (2018). A crescente eletrificação dos lares, associada à expansão urbana e à desigualdade socioeconômica, acarreta impactos diferenciados na pegada de carbono, evidenciados por Souza e Walter (2017). Este trabalho investiga como as transformações na matriz energética nacional influenciam essas emissões, com atenção especial à energia solar como alternativa sustentável (Tolmasquim, 2016). O objetivo geral é quantificar e comparar as emissões de carbono por classe socioeconômica e cenários de matrizes elétricas, avaliando a contribuição da energia solar na redução desses ocoridos.

2 METODOLOGIA

Este estudo quantitativo e exploratório, foi baseado na análise de cenários do PNE 2050, inventários de ciclo de vida (Ecoinvent, 2022) e dados da Pesquisa de Posse e Hábitos (ELETROBRAS, 2019). Os cálculos da pegada de carbono consideram a emissão por kWh gerado por diferentes fontes e o consumo médio de eletricidade das famílias brasileiras.

Foram comparados dez cenários de geração elétrica, com projeções para 2030, 2040 e 2050, incluindo hipóteses com e sem expansão de fontes fósseis. A análise utilizou o software OpenLCA para modelagem da Avaliação do Ciclo de Vida (GREENDDELTA, 2020).

A partir das fontes de dados e ferramentas apresentadas na Tabela 1, foi realizada a definição dos cenários de geração elétrica com base nas projeções do Plano Nacional de Energia 2050 (PNE - 2050). Os fatores de emissão por

fonte energética foram obtidos a partir da base Ecoinvent 3.8, utilizando o software OpenLCA para a modelagem da Avaliação do Ciclo de Vida (ACV) (MME, 2020).

Tabela 1. Resumo das fontes de dados e ferramentas utilizadas

Etapa	Fonte de Dados / Ferramenta	Tipo de Dado
Definição de cenários	PNE 2050 (MME, 2020).	Projeção de geraçãoelétrica
Emissões por fonte	Base Ecoinvent 3.8 / OpenLCA(Ecoinvent Association, 2021).	Fatores de emissão por kWh
Consumo médio residencial	PPH 2019 (ELETROBRAS, 2019).	Consumo por classe socioeconômica
Cálculo da pegada de carbono	Modelagem em Excel e OpenLCA (GREENDDELTA, 2020).	Emissão total por cenário e classe

Fonte: Elaborado pelos autores (2025).

Para caracterizar o consumo médio residencial, foram utilizados dados do Procel Programa de Habitabilidade (PPH - 2019), segmentados por classe socioeconômica. Posteriormente, os dados de consumo e de emissão foram integrados em planilhas eletrônicas no Excel e no ambiente do OpenLCA para o cálculo da pegada de carbono total e per capita em cada cenário proposto(ELETROBRAS, 2019). A análise procedeu-se pela comparação entre os cenários, identificando as variações nas emissões de CO₂eq ao longo do tempo e entre diferentes classes sociais, permitindo assim a avaliação do impacto da adoção de fontes renováveis no consumo residencial brasileiro.

3 RESULTADOS E DISCUSSÃO

As análises realizadas indicam que cenários com maior participação de fontes renováveis apresentam reduções expressivas na pegada de carbono residencial. a energia solar, em particular, por não emitir Gases de Efeito Estufa (GEE) durante sua operação, contribui significativamente para a descarbonização do setor.

A Tabela 2 demonstra que a pegada de carbono anual por residência tende a diminuir consideravelmente até 2050, especialmente no cenário que prioriza a expansão de fontes limpas. As residências da classe UM, que apresentavam a maior pegada em 2015 (289 kgCO₂eq/ano), podem alcançar uma redução de até 79%. Já nas classes D/E, a redução estimada é de 78%, indicando que os benefícios da transição energética atingem todas as classes sociais, embora em magnitudes distintas.

Tabela 2. Pegada de Carbono anual por residência (kgCO₂eq/ano) por classe e cenário

Classe socioeconômica	2015	2050 (Cenário de Estagnação)	2050 (Cenário com fontes limpas)
UM	289	193	61
B1	268	179	57
B2	218	146	47
C1	196	131	42
C2	167	112	36
D/E	100	67	22

Fonte: Adaptado de Casara (2022).

Esses resultados corroboram os achados de Lucena et al. (2018), que evidenciam o potencial da matriz elétrica brasileira para promover uma significativa redução nas emissões, desde que se mantenham políticas públicas de estímulo às fontes renováveis. Além disso, Souza e Walter (2017) apontam que as desigualdades socioeconômicas refletem diretamente no padrão de consumo energético, o que também é observado nos dados analisados: classes mais altas continuam apresentando um consumo e uma emissão absoluta superiores, mesmo com a tendência de queda geral.

Outro ponto a ser destacado é que o incentivo à geração distribuída, especialmente por meio da energia solar, pode contribuir para reduzir essas desigualdades, democratizando o acesso à energia limpa (Tolmasquim, 2016). Conforme Soriani *et al.* (2020), a promoção de políticas inclusivas para financiamento e instalação de sistemas fotovoltaicos em residências de menor renda é fundamental para garantir uma transição energética justa e equitativa.

Dessa forma, os resultados evidenciam que, enquanto a matriz energética mais limpa pode reduzir a pegada de carbono de todas as classes sociais, ações de incentivo e inclusão são essenciais para assegurar que a transição beneficie igualmente os diferentes estratos da população brasileira.

4 CONSIDERAÇÕES FINAIS

A transição para uma matriz energética baseada em fontes renováveis, especialmente a solar, é essencial para reduzir as emissões de carbono no setor residencial. Os resultados demonstram que políticas públicas voltadas à expansão da geração distribuída e ao apoio a famílias de baixa renda são fundamentais. O estudo reforça a necessidade de planejamento energético alinhado com metas climáticas e justiça social.

ODS

ODS 7 - Energia acessível e limpa

ODS 13 - Ação contra a mudança global do clima

REFERÊNCIAS

AGÊNCIA DE. **Rastreamento de edifícios 2021**. Paris: AIE, 2021. AIE – AGÊNCIA INTERNACIONAL DE ENERGIA. Rastreamento de edifícios 2021. Paris: AIE, 2021.

BRASIL. Ministério de Minas e Energia. **Plano Nacional de Energia 2050**. Brasília: MME, 2020.

CASARA, El. **Pegada de carbono relacionada aos consumos elétricos de residências no Brasil:** cenário atual e projeções. 2022. Dissertação (Mestrado em Engenharia de Produção) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2022.

ECOINVENT. Banco de dados versão 3.8. Suíça: Ecoinvent Centre, 2022. Disponível em: https://www.ecoinvent.org/. Acesso em: 25 abr. 2025.

ELETROBRAS. Pesquisa de Posse de Equipamentos e Hábitos de Uso – PPH 2019. Rio de Janeiro: Eletrobras, 2019.

ELETROBRÁS. **Pesquisa de posse e hábitos de uso de equipamentos elétricos – PPH 2019**. Rio de Janeiro: Eletrobras, 2019.

GREENDDELTA. *Open LCA* [software]. Versão 1.10.2. **Berlim:** GreenDelta, 2020. Disponível em: https://www.openlca.org/. Acesso em: 26 de abril de 2025.

LUCIENA, A. F. P.; *et al.* Impactos da eletrificação no setor residencial brasileiro: análise de cenários. Rio de Janeiro: COPPE/UFRJ, 2018.

MINISTÉRIO DE MINAS E ENERGIA (MME). **Plano Nacional de Energia 2050**. Brasília: MME, 2020.

SORIANI, R. F.; VIANA, A. L.; SOUZA, G. F. M. Análise do consumo de energia elétrica no setor residencial brasileiro: padrões de consumo e suas implicações ambientais. **Revista Brasileira de Energia**, v. 26, n. 2, p. 91-116, 2020.

SOUZA, S. P.; WALTER, A. Impactos socioambientais do consumo de energia elétrica residencial no Brasil: desigualdades e pegada de carbono. Estudos Avançados, v. 31, n. 89, p. 125-142, 2017.

TOLMASQUIM, M. T. **Geração de energia elétrica:** alternativas para um futuro sustentável. 2. ed. Rio de Janeiro: Synergia, 2016.

WIEDMANN, T.; MINX, J. Uma definição de "pegada de carbono". Tendências de Pesquisa em Economia Ecológica de Pesquisa, Nova York, v. 1, p. 1–11, 2008.